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Abstract. We establish a unique continuation property for solutions of the differential
inequality |∇u| ≤ V |u|, where V is locally Ln integrable on a domain in Rn. A stronger
uniqueness result is obtained if in addition the solutions are locally Lipschitz. One applica-
tion is a finite order vanishing property in the L2 sense for the exponential of W 1,n functions.
We further discuss related results for the Cauchy-Riemann operator ∂̄ and characterize the
vanishing order for smooth extension of holomorphic functions across the boundary.

1. Introduction and Results

Let Ω be a connected open subset of Rn. We investigate solutions to the following differ-
ential inequality concerning the gradient operator ∇:

|∇u| ≤ V |u| on Ω, (1.1)

with the potential V ∈ Ln
loc(Ω).

A function u ∈ L2
loc(Ω) is said to vanish to infinite order (or to be flat) at a point x0 ∈ Ω

(in the L2 sense) means that for all m ≥ 0,

lim
r→0

r−m

∫
|x−x0|<r

|u(x)|2dv = 0,

where dv is the Lebesgue measure element in Rn. Otherwise, u vanishes to finite order at x0
in the L2 sense. We say a differential (in)equality satisfies the (strong) unique continuation
property to mean that every H1

loc(Ω)
(
= W 1,2

loc (Ω)
)
solution that vanishes to infinite order at a

point in the L2 sense must vanish identically. Here for p ≥ 1,W 1,p
loc (Ω) is the standard Sobolev

space of Lp
loc(Ω) functions whose first order weak derivatives are represented by functions in

Lp
loc(Ω). While studying the unique continuation property of the Cauchy-Riemann operator

∂̄ in several complex variables:

|∂̄u| ≤ V |u| on Ω ⊆ Cn, (1.2)

we observe that (1.2) is reduced to (1.1) when the solutions are real-valued. This motivates
us to study the following unique continuation property of H1

loc(Ω) solutions to (1.1).
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Theorem 1.1. Let Ω be a domain in Rn, n ≥ 2 and V ∈ Ln
loc(Ω). Suppose u = (u1, . . . , uM) :

Ω → RM with u ∈ H1
loc(Ω) and satisfies |∇u| ≤ V |u| a.e. on Ω. If u vanishes to infinite

order at some x0 ∈ Ω, then u ≡ 0.

The n = 2 case in Theorem 1.1 is due to a unique continuation property result in [PZ]
concerning the ∂̄ operator. For higher dimensions, the proof makes use of a Hardy-type
inequality, along with the Gagliardo-Nirenberg-Sobolev inequality. When the potential is no
longer in Ln, one can still get the unique continuation property for some special types of
potentials, see Theorem 2.6. However, as shown in Example 2.5, the property fails in general
for V /∈ Ln. On the other hand, Theorem 2.7 states that the weak unique continuation
property always holds for (1.1) as long as V ∈ L2.

As a consequence of Theorem 1.1, we obtain the following property of vanishing to finite
order for the exponential of W 1,n functions. Note that the W 1,n space is the critical Sobolev
space where the Sobolev embedding theorem fails, and instead is substituted by the Moser-
Trudinger inequality.

Theorem 1.2. Let Ω be an open set in Rn, n ≥ 2. Suppose ϕ : Ω → R with ϕ ∈ W 1,n
loc (Ω).

Then the exponential eϕ of ϕ vanishes to finite order in the L2 sense at each point in Ω.

In the second part of the paper, we focus on locally Lipschitz solutions to (1.1). Under the
context of this more restricted function space, we are able to prove a uniqueness result below
by just assuming the vanishing of the first jets. A similar uniqueness result was discussed
in [PW] for higher order differential operators on smooth functions of one variable (n = 1).
It is worth pointing out that the Lipschitz assumption on the solutions cannot be dropped
here when n ≥ 2, see Remark 3.9.

Theorem 1.3. Let Ω be a domain in Rn, n ≥ 1 and V ∈ Ln
loc(Ω). Suppose u = (u1, . . . , uM) :

Ω → RM is a locally Lipschitz function on Ω satisfying |∇u| ≤ V |u| a.e. on Ω. If u(x0) = 0
at some x0 ∈ Ω, then u ≡ 0.

Theorem 1.3 can be readily applied to study the uniqueness of some types of nonlinear
differential systems, as indicated in Corollary 3.11. In Section 4, we discuss further appli-
cations under the Lipschitz setting. In particular, Theorem 4.2 shows that the logarithm of
a positive Lipschitz function cannot fall in W 1,n near every zero point of the function. On
the other hand, we prove that if in addition eϕ in Theorem 1.2 is Lipschitz, then eϕ must be
nowhere zero, see Corollary 4.5.

In the last section, we discuss related results for the ∂̄ operator on domains in Cn. To
start with, we construct Example 5.1 to show that the gradient operator ∇ in Theorem 1.3
cannot be replaced by the ∂̄ operator even for real analytic functions. On the other hand,
we give finer characterizations in terms of an L2 divergence for holomorphic functions that
are extended smoothly across the boundary.
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2. Unique continuation for H1 solutions

Let Ω be a domain (by which we mean a connected open set) in Rn = {(x1, . . . , xn)}. For
scalar valued u : Ω → R, u ∈ W 1,p

loc (Ω), the gradient of u is the vector of first order weak
partial derivatives:

∇u = (∂x1u, . . . , ∂xnu),

defined on Ω. The norm of a vector x ∈ Rn is |x| =
√
x21 + · · ·+ x2n, and in particular the

norm of the gradient is defined on the domain of the gradient by

|∇u|2 = (∂x1u)
2 + · · ·+ (∂xnu)

2.

Given r > 0 and x0 ∈ Rn, let Br(x0) denote the open ball centered at x0 with radius r —
in the special case x0 = 0, we abbreviate Br = Br(0). For sets A ⊆ Rn, let ∂A denote the
set of boundary points of A and let A denote the closure of A.

In this section, we prove Theorem 1.1, the unique continuation property for vector valued
H1 solutions u : Ω → RM , where the inequality (1.1) reads as

|∇u| =

(
n∑

j=1

M∑
k=1

|∂xj
uk|2

) 1
2

≤ V

(
M∑
k=1

|uk|2
) 1

2

= V |u|. (2.1)

We first prove the following Hardy-type inequality for ∇.

Lemma 2.1. Let u ∈ H1(Rn) with support outside a neighborhood of 0. Then for any λ > n
2
,∫

Rn

|u(x)|2

|x|2λ
dv ≤ 4

(2λ− n)2

∫
Rn

|∇u(x)|2

|x|2λ−2
dv. (2.2)

Proof. We first show the inequality when u ∈ C∞
c (Rn \ {0}). Let

F (x) :=
n∑

j=1

|u(x)|2xj
|x|2λ

dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn.

Then F is a smooth (n− 1) form with compact support. Note for each j = 1, . . . , n,

n∑
j=1

∂xj

(
xj
|x|2λ

)
=

n∑
j=1

(
1

|x|2λ
−

2λx2j
|x|2λ+2

)
=
n− 2λ

|x|2λ
.

Applying Stokes’ theorem on F , we have

0 =

∫
Rn

dF =

∫
Rn

(n− 2λ)|u(x)|2

|x|2λ
dv +

∫
Rn

2u(x)⟨∇u(x), x⟩
|x|2λ

dv.

Thus ∫
Rn

|u(x)|2

|x|2λ
dv =

2

(2λ− n)

∫
Rn

u(x)⟨∇u(x), x⟩
|x|2λ

dv.
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By the Cauchy-Schwarz inequality, one further gets∫
Rn

|u(x)|2

|x|2λ
dv ≤ 2

(2λ− n)

∫
Rn

|u(x)||∇u(x)|
|x|2λ−1

dv

≤ 2

(2λ− n)

(∫
Rn

|u(x)|2

|x|2λ
dv

) 1
2
(∫

Rn

|∇u(x)|2

|x|2λ−2
dv

) 1
2

.

Dividing both sides by
(∫

Rn

|u(x)|2
|x|2λ dv

) 1
2
and then squaring both sides, we obtain (2.2) for

u ∈ C∞
c (Rn \ {0}).

For general u ∈ H1(Rn) with support, say, away from Br, r > 0, we use the standard
density argument. In detail, let u(j) ∈ C∞

c (Rn \Br) → u in H1 norm. Then(∫
Rn

|u(x)|2

|x|2λ
dv

) 1
2

≤
(∫

Rn\Br

|u(x)− u(j)(x)|2

|x|2λ
dv

) 1
2

+

(∫
Rn

|u(j)(x)|2

|x|2λ
dv

) 1
2

≤ 1

rλ

(∫
Rn

|u(x)− u(j)(x)|2dv
) 1

2

+
2

(2λ− n)

(∫
Rn

|∇u(j)(x)|2

|x|2λ−2
dv

) 1
2

.

Here we used (2.2) for u(j) ∈ C∞
c (Rn \ {0}). Thus(∫

Rn

|u(x)|2

|x|2λ
dv

) 1
2

≤ 1

rλ

(∫
Rn

|u(x)− u(j)(x)|2dv
) 1

2

+
2

(2λ− n)

(∫
Rn\Br

|∇u(j)(x)−∇u(x)|2

|x|2λ−2
dv

) 1
2

+
2

(2λ− n)

(∫
Rn

|∇u(x)|2

|x|2λ−2
dv

) 1
2

≤ 1

rλ

(∫
Rn

|u(x)− u(j)(x)|2dv
) 1

2

+
2

(2λ− n)rλ−1

(∫
Rn

|∇u(j)(x)−∇u(x)|2dv
) 1

2

+
2

(2λ− n)

(∫
Rn

|∇u(x)|2

|x|2λ−2
dv

) 1
2

≤
(

1

rλ
+

2

(2λ− n)rλ−1

)
∥u− u(j)∥H1(Rn) +

2

(2λ− n)

(∫
Rn

|∇u(x)|2

|x|2λ−2
dv

) 1
2

.

Letting j → ∞, we have the desired inequality (2.2).
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Lemma 2.2. Let u ∈ H1(Rn) with support outside a neighborhood of 0. Then there exists a
constant C0 > 0 such that for any λ >> n

2
,∫

Rn

∣∣∣∣∇( u(x)

|x|λ−1

)∣∣∣∣2 dv ≤ C0

∫
Rn

|∇u(x)|2

|x|2λ−2
dv.

Proof. Since |∇|x|| = 1, we have∫
Rn

∣∣∣∣∇( u(x)

|x|λ−1

)∣∣∣∣2 dv ≤2

∫
Rn

|∇u(x)|2

|x|2λ−2
dv + 2(λ− 1)2

∫
Rn

|u(x)|2

|x|2λ
dv

≤2

∫
Rn

|∇u(x)|2

|x|2λ−2
dv +

8(λ− 1)2

(2λ− n)2

∫
Rn

|∇u(x)|2

|x|2λ−2
dv

=

(
2 +

8(λ− 1)2

(2λ− n)2

)∫
Rn

|∇u(x)|2

|x|2λ−2
dv.

Here in the second inequality we used Lemma 2.1. The lemma thus follows from the fact

that lim
λ→∞

8(λ− 1)2

(2λ− n)2
= 2.

Throughout the rest of the paper, we occasionally use the notation a ≲ b for two quantities
a and b, to mean that there exists a universal constant C (dependent only possibly on n)
such that a ≤ Cb. To prove Theorem 1.1 in the case when n = 2, we will use the following
unique continuation property established in [PZ] for ∂̄. Note that identifying z ∈ C with
(x1, x2) ∈ R2, then for a function u on Ω, ∂̄zu = 1

2
(∂x1u+ i∂x2u). It would be interesting to

have a real-variable approach for this case, but we currently do not.

Proposition 2.3. [PZ] Let Ω be a domain in C. Suppose u = (u1, . . . , uN) : Ω → CN with
u ∈ H1

loc(Ω) and satisfies |∂̄u| ≤ V |u| a.e. on Ω for some V ∈ L2
loc(Ω). If u vanishes to

infinite order at z0 ∈ Ω, then u vanishes identically.

Proof of Theorem 1.1: The n = 2 case follows from Proposition 2.3 and the trivial fact that
|∂̄u| ≲ |∇u|. When n ≥ 3, without loss of generality assume x0 = 0. Fix r ∈ (0, 1) so that(∫

B2r

|V (x)|ndv
) 2

n

<
1

2C0C2
1

, (2.3)

where C0 is the constant in Lemma 2.2, and C1 is the constant in the Gagliardo-Nirenberg-
Sobolev inequality:

∥f∥
L

2n
n−2 (Rn)

≤ C1∥∇f∥L2(Rn), for all f ∈ H1(Rn).

We shall show that u = 0 in B r
2
. Thus, applying a standard propagation argument we obtain

u ≡ 0 on Ω.
Choose η ∈ C∞

c (Rn) such that 0 ≤ η ≤ 1, η = 1 on Br, η = 0 outside B2r, and |∇η| ≤ 2
r

on B2r \ Br. Let ψ ∈ C∞(Rn) be such that 0 ≤ ψ ≤ 1, ψ = 0 in B1, ψ = 1 outside B2, and
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|∇ψ| ≤ 2 on B2 \ B1. For each k ≥ 4
r
(then 2

k
≤ r

2
), let ψk(x) = ψ(kx), x ∈ Rn. Defining

u(k) = ψkηu, note that u
(k) ∈ H1(Rn) and is supported inside B2r \B 1

k
. Then for each k ≥ 4

r

and λ > n
2
,∫

B2r

|∇u(k)(x)|2

|x|2λ−2
dv

≲
∫
B2r

|ψk(x)η(x)|2|∇u(x)|2

|x|2λ−2
dv +

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv +

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv

≤
∫
B2r

|V (x)|2|ψk(x)η(x)u(x)|2

|x|2λ−2
dv +

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv +

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv

≤
(∫

B2r

|V (x)|ndv
) 2

n

(∫
Rn

(
|u(k)(x)|
|x|λ−1

) 2n
n−2

dv

)n−2
n

+

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv

+

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv. (2.4)

Here we have used Hölder’s inequality in (2.4). Since |u(k)(x)|
|x|λ−1 ∈ H1(Rn), n ≥ 3, making use

of the Gagliardo-Nirenberg-Sobolev inequality and Lemma 2.2, we get(∫
Rn

(
|u(k)(x)|
|x|λ−1

) 2n
n−2

dv

)n−2
n

≤C2
1

∫
Rn

∣∣∣∣∇( |u(k)(x)|
|x|λ−1

)∣∣∣∣2 dv ≤ C0C
2
1

∫
B2r

|∇u(k)(x)|2

|x|2λ−2
dv.

This combined with (2.4) and (2.3) for each k ≥ 4
r
and λ > n

2
leads to∫

B2r

|∇u(k)(x)|2

|x|2λ−2
dv ≤ 2

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv + 2

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv. (2.5)

Now suppose toward a contradiction that ∇u ̸≡ 0 on B r
2
. Then there exists k1 > 0 such

that

M1 =

∫
B r

2
\B 2

k1

|∇u(x)|2dv > 0. (2.6)

Consequently for each fixed λ > n
2
,

Mλ =

∫
B r

2
\B 2

k1

|∇u(x)|2

|x|2λ−2
dv > 0.
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Noting that ∇u(k) = ∇u on B r
2
\B 2

k1

for any k ≥ k1 by construction of u(k), we further have

for any k ≥ k1, ∫
B r

2

|∇u(k)(x)|2dv ≥
∫
B r

2
\B 2

k1

|∇u(x)|2dv =M1 > 0, (2.7)

and ∫
B r

2

|∇u(k)(x)|2

|x|2λ−2
dv ≥

∫
B r

2
\B 2

k1

|∇u(x)|2

|x|2λ−2
dv =Mλ > 0. (2.8)

On the other hand, by flatness of u at 0,∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv =

∫
B 2

k
\B 1

k

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv ≤ 4k2λ

∫
B 2

k

|u(x)|2dv → 0 (2.9)

as k → ∞. In particular, by (2.8) one can get some kλ > k1 such that∫
Br

|∇ψkλ(x)|2|u(x)|2

|x|2λ−2
dv ≤ Mλ

4
≤ 1

4

∫
Br

|∇u(kλ)(x)|2

|x|2λ−2
dv.

Thus (2.5) with k = kλ becomes∫
B2r

|∇u(kλ)(x)|2

|x|2λ−2
dv ≤ 4

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv. (2.10)

Since ∫
B2r

|∇u(kλ)(x)|2

|x|2λ−2
dv ≥

∫
B r

2

|∇u(kλ)(x)|2

|x|2λ−2
dv ≥

(
2

r

)2λ−2 ∫
B r

2

|∇u(kλ)(x)|2dv

and ∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv ≤ 1

r2λ−2

∫
B2r\Br

|∇η(x)|2|u(x)|2dv,

we obtain from (2.10) that

22λ−4

∫
B r

2

|∇u(kλ)(x)|2dv ≤
∫
B2r\Br

|∇η(x)|2|u(x)|2dv.

Letting λ→ ∞ and making use of the fact that u ∈ H1
loc(Ω), we see that∫

B r
2

|∇u(x)|2dv = 0.

But this contradicts (2.6)! We thus have ∇u ≡ 0 on B r
2
. By flatness of u at 0, u must be

zero on B r
2
.
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Example 2.4. Given 0 < ε < n−1
n
, n ≥ 2, consider the differential equation

|∇u| = V |u| on B 1
2
,

where

V =
ε(− log |x|)ε−1

|x|
on B 1

2
.

It is straightforward to verify that V ∈ Ln(B 1
2
). As a consequence of Theorem 1.1, every

nonconstant H1 solution must vanish to finite order in the L2 sense at each point in B 1
2
.

On the other hand, the function

u0(x) = e−(− log |x|)ε

(extended to the origin by u0(0) = 0) is continuous on B 1
2
, and smooth on B 1

2
\{0}. Moreover,

u0 ∈ H1(B 1
2
) and is a solution of |∇u| = V u a.e. on B 1

2
. Note that there is no contradiction

with Theorem 1.1 since u0 vanishes to finite order in the L2 sense everywhere in B 1
2
.

When V ∈ Lp, p < n, the unique continuation property fails in general as seen below.

Example 2.5. For each 1 ≤ p < n, and 0 < ϵ < n−p
p

(so that (ϵ+ 1)p < n),

u(x) = e−
1

|x|ϵ

(extended to the origin by u(0) = 0) is a smooth function on B1 and vanishes to infinite
order at 0. Moreover, the function u satisfies |∇u| ≤ V |u| on B1 with

V =
ϵ

|x|ϵ+1
∈ Lp(B1).

On the other hand, the following theorem states that for some special potentials in the
form of multiples of 1

|x| , the unique continuation property can still hold. Note that 1
|x| /∈ Ln

loc.

Theorem 2.6. Let Ω be a domain in Rn, n ≥ 1. Suppose u = (u1, . . . , uM) : Ω → RM with
u ∈ H1

loc(Ω) and satisfies |∇u| ≤ C
|x| |u| a.e. for some constant C > 0. If u vanishes to infinite

order at some x0 ∈ Ω in the L2 sense, then u vanishes identically.
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Proof. Assume x0 = 0 and consider u(k) = ψkηu, where ψk and η are defined as in the proof
of Theorem 1.1. Then by Lemma 2.1,∫

B2r

|u(k)(x)|2

|x|2λ
dv

≤ 4

(2λ− n)2

∫
B2r

|∇u(k)(x)|2

|x|2λ−2
dv

≲
4

(2λ− n)2

∫
B2r

|ψk(x)η(x)|2|∇u(x)|2

|x|2λ−2
dv +

4

(2λ− n)2

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv

+
4

(2λ− n)2

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv

≤ 4C2

(2λ− n)2

∫
B2r

|u(k)(x)|2

|x|2λ
dv +

4

(2λ− n)2

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv

+
4

(2λ− n)2

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv.

Here we used the inequality |∇u| ≤ C
|x| |u| in the first term of the last inequality. When

4C2

(2λ−n)2
≤ 1

2
(equivalently, when λ > n

2
+
√
2C), one can move this first term to the left hand

side and get∫
B2r

|u(k)(x)|2

|x|2λ
dv ≤ 8

(2λ− n)2

∫
Br

|∇ψk(x)|2|u(x)|2

|x|2λ−2
dv+

8

(2λ− n)2

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv.

Letting k → ∞ and making use of the flatness of u with a similar argument as in (2.9),
we obtain ∫

B2r

|u(x)|2

|x|2λ
dv ≤ 16

(2λ− n)2

∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv.

Since ∫
B2r

|u(x)|2

|x|2λ
dv ≥

∫
B r

2

|u(x)|2

|x|2λ
dv ≥

(
2

r

)2λ ∫
B r

2

|u(x)|2dv

and ∫
B2r\Br

|∇η(x)|2|u(x)|2

|x|2λ−2
dv ≤ 1

r2λ−2

∫
B2r\Br

|∇η(x)|2|u(x)|2dv,

we have ∫
B r

2

|u(x)|2dv ≤ r2

(2λ− n)222λ−4

∫
B2r\Br

|∇η(x)|2|u(x)|2dv.

Letting λ→ ∞, we see u ≡ 0 on B r
2
.
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Although the unique continuation property for (1.1) fails for general Lp, p < n, potentials
as demonstrated in Example 2.5, the following theorem shows that if the potential is in
L2 then the weak continuation property holds. Recall that weak unique continuation for a
differential (in)equality is the property that every solution that vanishes in an open subset
vanishes identically.

Theorem 2.7. Let Ω be a domain in Rn, n ≥ 2, and let V ∈ L2
loc(Ω). Suppose u =

(u1, . . . , uM) : Ω → RM with u ∈ H1
loc(Ω) and satisfies |∇u| ≤ V |u| on Ω. If u vanishes in

an open subset of Ω, then u vanishes identically.

Proof. The n = 2 case is a direct consequence of Theorem 1.1, since the (strong) unique
continuation implies the weak unique continuation property. We shall show below when
n = 3, for any two domains D1, D2 in R2 with D1 ⊆ D2, and s > 0, if u satisfies (1.1) on the
product domain D2 × (−s, s) and u = 0 on D1 × (−s, s), then u = 0 on D2 × (−s, s). If so,
then u ≡ 0 with a standard propagation argument. The proof for n ≥ 3 cases follows from
an induction.

Since V ∈ L2
loc(D2×(−s, s)), by Fubini’s theorem, for almost every x3 ∈ (−s, s), V (·, x3) ∈

L2
loc(D2), and similarly u(·, x3) ∈ H1

loc(D2). Restricting (2.1) at each such x3 = c3 ∈ (−s, s),
we have v = u(·, c3) satisfies

|∇v| =

(
M∑
k=1

|∂x1uk(·, c3)|2 + |∂x2uk(·, c3)|2
) 1

2

≤ |∇u(·, c3)| ≤ V (·, c3)|u(·, c3)| = V (·, c3)|v|

on D2 and v = 0 on D1. Applying the n = 2 case we have v = 0 on D2. Thus u = 0 on
D2 × (−s, s).

3. Uniqueness for Lipschitz functions

In this section, we focus on locally Lipschitz functions whose definition is given below.

Definition 3.1. A function u : Ω → R is said to be locally Lipschitz on Ω means that for
any point p ∈ Ω, there is some neighborhood p ∈ Up ⊆ Ω and some constant Cp so that for
all x, y ∈ Up, |u(y)− u(x)| < Cp|y − x|. The function u is Lipschitz on Ω means that there
exists a constant C such that for all x, y ∈ Ω, |u(y)− u(x)| < C|y − x|.

According to Rademacher’s Theorem, if u is locally Lipschitz on Ω, then ∇u is defined
a.e. on Ω. See, for instance, [E, pp. 296]. Moreover,

Proposition 3.2. [E, pp. 294] Let Ω be a domain in Rn. Then u is locally Lipschitz on Ω
if and only if u ∈ W 1,∞

loc (Ω).

Following the convention of [E], even for u ∈ W 1,∞
loc (Ω) defined a.e. in Ω or with some

measure zero set of discontinuities, there is a unique continuous function agreeing with u
a.e., which we will also denote u.
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To prove Theorem 1.3, we begin with a uniqueness property of Lipschitz functions in one
real variable on an interval, making use of the following fundamental theorem of calculus for
Lipschitz functions.

Proposition 3.3. [R, Theorem 7.20, Fundamental Theorem of Calculus] If u : [0, 1] → R is
Lipschitz on [0, 1], then for any 0 ≤ a < b ≤ 1,

u(b)− u(a) =

∫ b

a

u′(t)dt.

Lemma 3.4. Let φ : [0, 1] → R be Lipschitz on [0, 1], with φ(0) = 0. If there exist p ≥ 1
and a non-negative function λ : [0, 1] → R with λ ∈ Lp([0, 1]) such that for a.e. x ∈ (0, 1),

|φ′(x)| ≤ λ(x) |φ(x)|x
1−p
p , (3.1)

then φ ≡ 0 in [0, 1].

Proof. We note first that we can assume without loss of generality that λ is non-vanishing.
Indeed, if that is not the case, then we can just replace λ with 1 + λ ∈ Lp([0, 1]) and (3.1)
still holds.

Let δ = sup{d ∈ [0, 1] |φ ≡ 0 in [0, d]}. By continuity, φ(δ) = 0, and by Proposition 3.3
(which uses the Lipschitz hypothesis), for all x ∈ (0, 1],

|φ(x)| = |φ(x)− φ(δ)| =
∣∣∣∣∫ x

δ

φ′(t)dt

∣∣∣∣ ≤ ∫ x

δ

|φ′(t)| dt. (3.2)

The existence of the RHS integral is from Proposition 3.2, with L∞([δ, x]) ⊆ Lp([δ, x]) ⊆
L1([δ, x]).

For p > 1, let q be the conjugate exponent so that 1
p
+ 1

q
= 1. By Hölder’s inequality, we

have ∫ x

δ

|φ′(t)| dt ≤
(∫ x

δ

|φ′(t)|p dt
) 1

p
(∫ x

δ

1q dt

) 1
q

≤
(∫ x

δ

|φ′(t)|p dt
) 1

p

x
p−1
p . (3.3)

It follows from (3.2) and (3.3) that for p ≥ 1,

|φ(x)|p ≤ xp−1

∫ x

δ

|φ′(t)|p dt. (3.4)

We multiply both sides of (3.4) by the function x1−pλp(x), to obtain:

λp(x) |φ(x)|px1−p ≤ λp(x)

∫ x

δ

|φ′(t)|p dt. (3.5)
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Suppose toward a contradiction that δ < 1, and let s ∈ (δ, 1). Integrating in the variable x
on both sides of (3.5) gives∫ s

δ

λp(x) |φ(x)|p x1−p dx ≤
∫ s

δ

(
λp(x)

∫ x

δ

|φ′(t)|p dt
)
dx. (3.6)

Note that the Lipschitz property of φ on [0, 1] and φ(0) = 0 imply there is some constant C
so that |φ(x)| ≤ C|x|, so |φ(x)|p x1−p is continuous and bounded as a function of x on (0, 1].
Then the hypothesis λ ∈ Lp([0, 1]) applies, so that both the LHS and RHS integrals in (3.6)
exist. The inequality (3.6) then implies, first using x ≤ s, and then the hypothesis (3.1):∫ s

δ

λp(x) |φ(x)|p x1−p dx ≤
(∫ s

δ

λp(x) dx

)(∫ s

δ

|φ′(x)|p dx
)

≤
(∫ s

δ

λp(x) dx

)(∫ s

δ

λp(x) |φ(x)|p x1−p dx

)
. (3.7)

By the construction of δ as the supremum of a set where φ(x) ≡ 0, we can find a sequence
of points sj ∈ (δ, 1) so that sj is decreasing, lim

j→∞
sj = δ, and φ(sj) ̸= 0. By the continuity of

|φ(x)|p x1−p and the property that λp ≥ 1, the integrand λp(x) |φ(x)|p x1−p is strictly positive
in some neighborhood of sj. So, for all j = 1, 2, 3, . . .,∫ sj

δ

λp(x) |φ(x)|p x1−p dx > 0.

The inequality (3.7) then yields, for all j,

1 ≤
∫ sj

δ

λp(x) dx. (3.8)

Since λ ∈ Lp(0, 1), letting sj → δ in (3.8) leads to a contradiction.

Recalling Rademacher’s theorem that a Lipschitz function is differentiable almost every-
where, the following simple, but useful, Lemma gives a set of points where the square of a
Lipschitz function is known to be differentiable.

Lemma 3.5. Let u be a locally Lipschitz function on an open set Ω ⊆ Rn. Then g = u2

is also locally Lipschitz on Ω. Moreover, g is differentiable wherever u vanishes and in fact
∇g(x) = 0 there.

Proof. The locally Lipschitz property of g follows from the well-known fact that the product
of locally Lipschitz functions is locally Lipschitz; this is easily checked as an elementary
consequence of Definition 3.1. The second claim is also elementary; let x0 ∈ Ω be such that
u(x0) = 0. The properties that g = u2 is differentiable at x0 and ∇g(x0) = 0 follow from the
definition of differentiability,

lim
x→x0

g(x)− g(x0)− 0 · (x− x0)

|x− x0|
= lim

x→x0

u2(x)

|x− x0|
= 0,
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where we have used the Lipschitz property of u(x) = u(x) − u(x0) = O(|x − x0|) in a
neighborhood of x0.

Lemma 3.6. For n ≥ 2, let A be a set of measure zero in the unit ball in Rn. Then for
almost all points ω in the unit sphere Sn−1, the set of intersection of A with the radius
segment {rω : 0 ≤ r ≤ 1} is of measure zero in the line measure.

Proof. Let |K| denote the d-dimensional measure of a measurable set K ⊆ Rd, and let
χA : Rn → R be the characteristic function of the set A. We have

0 = |A| =
∫
|x|<1

χA(x)dv =

∫
Sn−1

∫ 1

0

χA(rω)r
n−1drdω.

By Fubini’s theorem, we conclude that for a.e. ω ∈ Sn−1,
∫ 1

0
χA(rω)r

n−1dr = 0, which is the
desired result: |A ∩ {rω}| = 0.

Given a locally Lipschitz function u on Ω, denote by Zu be the zero set of u in Ω, that is,
Zu = {x ∈ Ω |u(x) = 0}. Theorem 1.3 will be a consequence of the following general result
concerning Lipschitz functions.

Theorem 3.7. Let Ω be a domain in Rn, n ≥ 2, and u be a locally Lipschitz function on Ω.
If the zero set Zu of u is neither ∅ nor Ω, then∫

Ω\Zu

∣∣∣∣∇u(x)u(x)

∣∣∣∣n dv = ∞. (3.9)

Proof. First we make the observation that in order to prove the theorem it suffices to prove
it for g = u2. In fact, since∫

Ω\Zu

∣∣∣∣∇g(x)g(x)

∣∣∣∣ndv = 2n
∫
Ω\Zu

∣∣∣∣∇u(x)u(x)

∣∣∣∣n dv,
if the conclusion (3.9) is true for g = u2, then it is also true for u. Hence we only need to
prove (3.9) for a function that is the square of a locally Lipschitz function. By Lemma 3.5,
the gradient of g is 0 at every point where g is 0 (the same set Zu where u is 0), and g also
satisfies the locally Lipschitz assumption. For the rest of the proof we assume (by replacing
u with g) that ∇u(x) = 0 wherever u(x) = 0. Let

V (x) =

{∣∣∣∇u(x)
u(x)

∣∣∣ x ∈ Ω \ Zu

0 x ∈ Zu.
(3.10)

Note that V is a measurable function in Ω. The zero set Zu is closed in Ω, and by the
assumptions that Zu ̸= ∅, Zu ̸= Ω, and Ω is connected, there is some boundary point
x0 ∈ ∂Zu ⊆ Zu ⊆ Ω, and a ball Br0(x0) such that the closure Br0(x0) ⊆ Ω, and u is Lipschitz

on Br0(x0). We can assume, after a translation and scaling, that x0 is the origin and the
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radius r0 is equal to 1. Because B1 \ Zu is open and non-empty, there is some Br1(x1) ⊆ B1

where u is nonvanishing.
Now suppose toward a contradiction that (3.9) is false:∫

Ω

V n(x) dv =

∫
Ω\Zu

∣∣∣∣∇u(x)u(x)

∣∣∣∣n dv <∞, (3.11)

and therefore V ∈ Ln(Ω). Hence in polar coordinates,∫
B1

V n(x) dv =

∫
Sn−1

∫ 1

0

V n(rω)rn−1 drdω. (3.12)

Since the integral (3.12) is finite, Fubini’s theorem implies that for a.e. ω ∈ Sn−1 we have∫ 1

0

V n(rω)rn−1 dr <∞. (3.13)

From Rademacher’s theorem, let A ⊆ Ω be the set of measure zero where ∇u(x) does not

exist at x. Choose ω0 ∈ Sn−1 such that (3.13) holds, that is, V (rω0)r
n−1
n ∈ Ln([0, 1]) and at

the same time, by Lemma 3.6 the same ω0 ∈ Sn−1 can be chosen such that ∇u(x) exists a.e.
on the radius segment {rω0}. Define φ, for t ∈ [0, 1], by

φ(t) = u(tω0).

It is evident that φ(t) is Lipschitz on [0, 1] from the Lipschitz property of u. Then applying
the chain rule at points t such that u is differentiable at tω0, we have

φ′(t) = ∇u(tω0) · ω0,

which implies, for a.e. t ∈ [0, 1],
|φ′(t)| ≤ |∇u(tω0)|. (3.14)

By the definition of V , we have

|φ′(t)| ≤ V (tω0)|u(tω0)| = V (tω0)|φ(t)| for u(tω0) ̸= 0. (3.15)

However, when u(tω0) = 0, we have, by the observation at the beginning of the proof,
∇u(rω0) = 0 and therefore φ′(t) = 0. Hence we have shown that

|φ′(t)| ≤ V (tω0)|φ(t)| = V (tω0)t
n−1
n |φ(t)|t−

n−1
n

holds for a.e. t ∈ [0, 1]. By Lemma 3.4, with λ(t) = V (tω0)t
n−1
n and p = n, φ(t) ≡ 0. So

u ≡ 0 on all the radius segments {tω0} for a.e. ω0 ∈ Sn−1, but this contradicts the fact that
u has no zeros in the ball Br1(x1).

Remark 3.8. The proof of Theorem 3.7 actually leads to the following stronger conclusion:
under the same assumption as in Theorem 3.7, on every neighborhood U ⊆ Ω of a point
a ∈ Ω ∩ ∂Zu, one has ∫

U\Zu

∣∣∣∣∇u(x)u(x)

∣∣∣∣n dv = ∞.
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Proof of Theorem 1.3. For the one-dimensional case n = 1, Ω is an open interval (a, b) and
Lemma 3.4 can be used directly. For any s ∈ (x0, b), let φ(x) = u((s − x0)x + x0) so that
φ(0) = u(x0) = 0, φ(1) = u(s), and φ is Lipschitz on [0, 1]. Lemma 3.4 applies to φ with
p = 1 and λ(x) = V ((s−x0)x+x0) · |s−x0| ∈ L1([0, 1]), to show φ(1) = 0 = u(s). Similarly,
u(t) = 0 for any a < t < x0.
For n ≥ 2, suppose u and V satisfy |∇u| ≤ V |u| a.e. on Ω with V ∈ Ln

loc(Ω). Let
B = Br(x0) be a nonempty open ball such that B ⊂ Ω. Suppose toward a contradiction
that B ̸⊆ Zu. Then u is locally Lipschitz on B, and the zero set Zu ∩B of u in B is neither
∅ (since x0 ∈ Zu ∩B) nor B. However,∫

B\Zu

∣∣∣∣∇u(x)u(x)

∣∣∣∣n dv ≤
∫
B\Zu

|V (x)|n dv <∞,

contradicting Theorem 3.7. We can conclude B ⊆ Zu. Thus Zu is both open and closed in
the connected set Ω and u ≡ 0.

Remark 3.9. The Lipschitz condition cannot just be dropped in Theorem 1.3 when n ≥ 2.
Indeed, Example 2.4 gives a nontrivial function u0 that is locally Lipschitz on B 1

2
\ {0},

continuous on B 1
2
with u0(0) = 0, and solves |∇u| = V |u| on B 1

2
for some V ∈ Ln(B 1

2
). This

indicates that the zero set of solutions fails to propagate at a non-Lipschitz point in general.

On the other hand, the hypothesis of Theorem 1.3 can be weakened as in the following
Corollary without contradicting Remark 3.9 — if u is a continuous kth root of a locally
Lipschitz function, then the uniqueness still holds.

Corollary 3.10. Let Ω be a domain in Rn and u : Ω → R be continuous on Ω with the zero
set Zu ⊆ Ω. If there is some integer k ≥ 1 so that v(x) = (u(x))k is locally Lipschitz on Ω,
then ∇u exists a.e. in Ω \ Zu. Further, if there is some V ∈ Ln

loc(Ω), so that ∇u satisfies

|∇u| ≤ V |u| a.e. on Ω \ Zu,

and Zu ̸= ∅, then u ≡ 0.

Proof. On the open set where u(x) > 0, the partial derivatives of v exist a.e. and at each
point where ∇v exists, by the chain rule, the partial derivatives of u(x) = (v(x))1/k exist,

with ∇u(x) = 1
k
(v(x))

1
k
−1∇v(x). Similarly, on the open set where u(x) < 0, the partial

derivatives of u = −((−1)kv)1/k exist a.e., establishing the first claim.
Consider g(x) = (v(x))2 = (u(x))2k. By Lemma 3.5, g is locally Lipschitz on Ω and at

every point where v(x) = 0, which is the same set as Zu, the partial derivatives of g exist
with ∇g = 0. At every point where u(x) ̸= 0, if ∇u exists, then ∇g also exists and is equal
to 2ku2k−1∇u. So, at every point in Ω except for a set of measure zero contained in Ω \ Zu,
∇g exists and satisfies:

|∇g| = 2k|u|2k−1|∇u| ≤ 2kV |u|2k = 2kV |g|.
Applying Theorem 1.3 and the assumption Zu ̸= ∅, we have g ≡ 0, and thus u ≡ 0.
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We conclude the section with an application of Theorem 1.3 to a uniqueness problem for
a nonlinear system of differential equations.

Corollary 3.11. For a domain Ω ⊆ Rn, u : Ω → R, x0 ∈ Ω, y0 ∈ R, let f : R → Rn be
Lipschitz on R. Then there exists at most one Lipschitz solution to ∇u = f(u) on Ω with
u(x0) = y0.

Proof. Suppose there exists a pair of Lipschitz solutions u1, u2 to ∇u = f(u) on Ω with the
same initial condition u1(x0) = u2(x0) = y0. Then w = u1−u2 is Lipschitz on Ω, w(x0) = 0,
and w satisfies

|∇w| = |∇u1 −∇u2| = |f(u1)− f(u2)| ≤ C|u1 − u2| = C|w| on Ω,

where C > 0 is the Lipschitz constant for f . By Theorem 1.3, we have w ≡ 0.

4. Further applications

Corollary 4.1. Given any nonempty closed set A ⊊ Rn, there exists a smooth function
F : Rn \ A → R so that for any point a ∈ ∂A, F cannot be extended to an Ln integrable
function over any neighborhood of a.

Proof. First, by a well-known theorem of Whitney ([W]), there exists a smooth function
h : Rn → R whose zero set is exactly A. Its square, u(x) = (h(x))2, is also smooth, has zero

set exactly A, and satisfies ∇u = 0 at every point of A by Lemma 3.5. The quotient |∇u|
|u| is

the claimed smooth function F on the open set Rn \ A. If there were some ball B = Br(a)

and a function V ∈ Ln(B) which agrees with |∇u|
|u| on B \ A, then u and V would satisfy

(1.1) from Theorem 1.3 at every point of B \ A by construction of V , and at every point of
B ∩ A, where |∇u| = 0. By Theorem 1.3, u ≡ 0 on B, contradicting the assumption that a
is a boundary point of the zero set.

Theorem 4.2. Let Ω be an open set in Rn, and u be a Lipschitz function on Ω. Then
log |u(x)− u(a)| /∈ W 1,n

loc (Ω \Zu−u(a)) for every a ∈ Ω. In particular, if log |u(x)| ∈ W 1,n
loc (Ω \

Zu), then u is nowhere zero on Ω. If, in addition, Ω has Lipschitz boundary, then the above
results also hold true with Ω replaced by Ω.

Proof. Let v = u− u(a) on Ω. Then v is Lipschitz on Ω with v(a) = 0. If log |v| /∈ Ln
loc(Ω),

then we are done. If log |v| ∈ Ln
loc(Ω), then one further computes

|∇ log |v|| = |∇v|
|v|

wherever v ̸= 0. If a is an interior point of Zv = {x ∈ Ω | v(x) = 0}, the zero set of v, then
the theorem is trivially true. If a ∈ ∂Zv ∩ Ω, then one can apply Remark 3.8 to conclude
∇ log |v| /∈ Ln

loc(Ω \ Zv).
In the case when a ∈ ∂Ω and Ω has Lipschitz boundary, if v(b) = 0 for some b ∈ Ω, then

it is reduced to the a ∈ Ω case. Thus we assume a ∈ ∂Ω and v(x) ̸= 0 for all x ∈ Ω. In
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particular, this means there exists a cone Sa ⊆ Ω centered at a (which exists since Ω has
Lipschitz boundary) such that v ̸= 0 on Sa. Making use of a similar argument as in the
proof of Theorem 3.7, with B1 replaced by Sa, one can obtain ∇ log |v| /∈ Ln

loc(Ω).

A natural way to view Theorem 4.2 is as follows. Denote by Lip(Ω) the set of all Lipschitz
functions on Ω. Theorem 4.2 implies that for each a ∈ Ω,

Ta(Lip(Ω)) ∩W 1,n(Ω) = ∅,

where Ta is a (non-linear) map on Lip(Ω) defined by Ta(u) = log |u−u(a)|, u ∈ Lip(Ω). The
following Corollary is a direct consequence of Theorem 4.2 as well.

Corollary 4.3. Let Ω be an open set in Rn and u : Ω → R be locally Lipschitz on Ω. If the
zero set Zu of u is neither empty nor Ω, and∫

Ω\Zu

|∇ log |u(x)||p dv <∞. (4.1)

then p < n.

Proposition 4.4. Let Ω be an open set in Rn, n ≥ 2, and ϕ : Ω → R with ϕ ∈ W 1,n
loc (Ω).

The following statements hold for the exponential e−|ϕ|.

(1) e−|ϕ| vanishes to finite order in the L2 sense anywhere in Ω.
(2) If e−|ϕ| is locally Lipschitz on Ω, then e−|ϕ| is nowhere zero on Ω. e−|ϕ| is nowhere

zero on Ω if in addition Ω has Lipschitz boundary.

Proof. Since ϕ ∈ W 1,n
loc (Ω), we have |ϕ| ∈ W 1,n

loc (Ω) as well. The function u = e−|ϕ| satisfies
|u| < 1 and

|∇u| = |∇|ϕ||e−|ϕ| = |∇|ϕ|| |u| ≤ |∇|ϕ|| ∈ Ln
loc(Ω).

See for instance [E, pp. 308]. Hence u ∈ W 1,n
loc (Ω) and satisfies |∇u| = V |u| with V = |∇|ϕ|| ∈

Ln
loc(Ω). By Theorem 1.1, u cannot vanish to infinite order in the L2 sense anywhere in Ω.
If e−|ϕ| is also Lipschitz on Ω, and e−|ϕ| is zero at x0 ∈ Ω, then |ϕ| = − log |u − u(x0)| /∈

W 1,n
loc (Ω) by Theorem 4.2. Contradiction!

Before proving Theorem 1.2, let us recall the Moser-Trudinger inequality: Let Ω be a

bounded domain in Rn with Lipschitz boundary, and αn = nw
1

n−1

n−1 where wn−1 is the surface
area of the unit sphere in Rn. There exists a positive constant CMT depending only on n
such that

sup
u∈W 1,n

0 (Ω), ∥∇u∥Ln(Ω)≤1

∫
Ω

eαn|u(x)|
n

n−1
dv ≤ CMT |Ω|.

Here |Ω| is the volume of Ω. We shall use the Moser-Trudinger inequality to prove that the
exponential of W 1,n functions is L2 integrable.



18 ADAM COFFMAN, YIFEI PAN, AND YUAN ZHANG

Proof of Theorem 1.2: First we show that eϕ ∈ L2
loc(Ω). Pick r small enough such that

B2r(x0) ⊆ Ω. By Sobolev extension theorem, there exists an extension ϕ̃ ∈ W 1,n
0 (B2r(x0)) of

ϕ|Br(x0) such that

a = ∥∇ϕ̃∥Ln(B2r(x0))) ≤ C∥ϕ∥W 1,n(Br(x0)))

for some constant C dependent only on r and n. In particular, ϕ̃1 := a−1ϕ̃ ∈ W 1,n
0 (B2r(x0))

and ∥∇ϕ̃1∥Ln(B2r(x0)) ≤ 1. Thus one applies the Moser-Trudinger inequality to obtain∫
B2r(x0)

eαn|ϕ̃1(x)|
n

n−1
dv ≲ 1.

Noting that 2ϕ̃ < αn|ϕ̃1|
n

n−1 when |ϕ̃| > 2n−1anα1−n
n , we further have∫

B2r(x0)∩{|ϕ̃|>2n−1anα1−n
n }

e2ϕ̃(x) dv ≤
∫
B2r(x0)

eαn|ϕ̃1(x)|
n

n−1
dv ≲ 1.

The claim that eϕ ∈ L2
loc(Ω) is thus a consequence of the following inequality∫

Br(x0)

e2ϕ(x) dv ≤
∫
B2r(x0)∩{|ϕ̃|≤2n−1anα1−n

n }
e2ϕ̃(x) dv +

∫
B2r(x0)∩{|ϕ̃|>2n−1anα1−n

n }
e2ϕ̃(x) dv

≲ e2
nanα1−n

n rn + 1.

On the other hand, by Proposition 4.4 part (1), e−|ϕ| vanishes to finite order in the L2 sense
at x0. Equivalently, there exists some m0 ≥ 0 such that

lim
r→0

r−m0

∫
|x−x0|<r

|e−|ϕ(x)||2dv > 0.

Since eϕ ≥ e−|ϕ| ≥ 0 and eϕ ∈ L2
loc(Ω), we further have

lim
r→0

r−m0

∫
|x−x0|<r

|eϕ(x)|2dv ≥ lim
r→0

r−m0

∫
|x−x0|<r

|e−|ϕ(x)||2dv > 0.

Namely, eϕ vanishes to finite order in the L2 sense at x0.

Corollary 4.5. Let Ω be an open set in Rn, n ≥ 2. Suppose ϕ : Ω → R with ϕ ∈ W 1,n
loc (Ω).

If eϕ is Lipschitz on Ω, then eϕ is nowhere zero on Ω.

Proof. It is not hard to verify that for all x1, x2 ∈ Ω,∣∣e−|ϕ(x2)| − e−|ϕ(x1)|
∣∣ ≤ |eϕ(x1) − eϕ(x2)|.

In particular, e−|ϕ| is Lipschitz whenever eϕ is so. Applying Proposition 4.4 part (2), we have
e−|ϕ|, and thus eϕ, is nowhere zero on Ω.
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5. In relation to ∂̄

On domains in Cn, if the gradient operator ∇ is replaced by the ∂̄ operator, then Theorem
1.3 fails, even for real analytic functions. In fact, there are real analytic functions that vanish
to any given order at one point and satisfy |∂̄u| ≤ V |u| for some V ∈ L∞.

Example 5.1. Let f be a holomorphic function on B1 ⊆ Cn that vanishes to order k at 0,
k ≥ 1. Letting u(z) =

(
1 + z̄1

2

)
f(z), then u is real analytic on B1, vanishes to order k at 0

and satisfies |∂̄u| ≤ 4|u|.
On the other hand, since |∇u|2 = |∂u|2 + |∂̄u|2 for a Lipschitz u, by Theorem 1.3 we have

near any neighborhood U of a zero point in ∂Zu of u,∫
U

|∇u(z)|2

|u(z)|2
dv =

∫
U

|∂̄u(z)|2

|u(z)|2
+

|∂u(z)|2

|u(z)|2
dv = ∞.

The following propositions discuss a finer property about the L2 divergence of ∇u
u

concerning
the smooth extension of holomorphic functions beyond the boundary. In particular, they
exhibit an intrinsic obstruction for holomorphic functions to be extended smoothly across
the boundary. We note that for smooth functions, the flatness in the L2 sense at a point is
equivalent to the vanishing of all jets at that point.

Proposition 5.2. Let Ω be a domain in C and z0 ∈ ∂Ω. Let u be a nonconstant holomorphic
function on Ω. If u can be extended smoothly across z0, still denoted by u, and u(z0) = 0,
then there exists a neighborhood U of z0 such that one of the following holds.

(1) If u vanishes to finite order at z0, then∫
U

|∂̄u(z)|2

|u(z)|2
dv <∞ and

∫
U

|∂u(z)|2

|u(z)|2
dv = ∞. (5.1)

(2) If u vanishes to infinite order at z0, then∫
U

|∂̄u(z)|2

|u(z)|2
dv = ∞. (5.2)

Proof. Without loss of generality let z0 = 0. In (1), since u vanishes to finite order at 0 and
is holomorphic on Ω, u = czk + O(|z|k+1) near 0 for some constant c ̸= 0, k ∈ Z+. With a
direct computation we have

|∂̄u|
|u|

=
O(zk)

|czk +O(|z|k+1)|
= O(1) and

|∂u|
|u|

=
k

|z|
+O(1), (5.3)

from which (5.1) follows.

For (2), if not, then set V = ∂̄u
u
where u ̸= 0, and V = 0 otherwise on U , so that V ∈ L2(U)

and ∂̄u = V u on U . According to Theorem 2.3, since u is flat at z0, we have u ≡ 0 on U . In
particular, u = 0 on the open set U ∩Ω. By the holomorphic property of u on Ω, we further
have u ≡ 0 on Ω. This contradicts the assumption that u is nonconstant on Ω.
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The following two corollaries give alternative characterizations on the vanishing order of
smooth extension of holomorphic functions across the boundary.

Corollary 5.3. Let Ω be a domain in C and z0 ∈ ∂Ω. Let u be a nonconstant holomorphic
function on Ω, and extend smoothly across z0, still denoted by u, with u(z0) = 0. Then the
following statements are equivalent to each other.

(1) u vanishes to finite order at z0.

(2) |∂̄u|
|u| ∈ L∞ near z0.

(3) |∂̄u|
|u| ∈ L2 near z0.

Corollary 5.4. Let Ω be a domain in C and z0 ∈ ∂Ω. Let u be a nonconstant holomorphic
function on Ω, and extend smoothly across z0, still denoted by u, with u(z0) = 0. Then the
following statements are equivalent to each other.

(1) u vanishes to infinite order at z0.

(2) |∂̄u|
|u| /∈ L∞ near z0.

(3) |∂̄u|
|u| /∈ L2 near z0.

Proof of Corollary 5.3 and 5.4: For Corollary 5.3, (2) ⇒ (3) is trivial. (3) ⇔ (1) is a direct
consequence of Proposition 5.2. (1) ⇒ (2) follows from (5.3) in the proof of Proposition 5.2.
Corollary 5.4 can be proved similarly.

Example 5.5. Let H+ be the upper half plane in C. The function

u = exp

(
1

i
√
iz

)
, arg iz ∈ (

π

2
,
3π

2
),

is holomorphic on H+ and vanishes to infinite order at z0 = 0. It allows for a smooth
extension across 0. By Proposition 5.2 (2), every smooth extension of u on a neighborhood
U of 0 should satisfy (5.2). Note that u cannot extend holomorphically across 0.
For every k ≥ 1, the function u = zk is holomorphic on H+ and vanishes to finite order k

at 0. By Proposition 5.2 (1), every smooth extension of u on a neighborhood U of 0 should
satisfy (5.1). For a less trivial example towards Proposition 5.2 (1) without holomorphic

extension across 0, one can consider u = zk + e
1

i
√

iz on H+ instead, and obtain (5.1) for every
smooth extension of u across 0.

Proposition 5.6. Let Ω be a domain in Cn and z0 ∈ ∂Ω. Let u be a nonconstant holomorphic
function on Ω. If u can be extended smoothly across z0, still denoted by u, and u(z0) = 0,
then there exists a neighborhood U of z0 such that one of the following holds.

(1) If u vanishes to finite order at z0, then there exists a complex line L passing through
z0 such that ∫

U∩L

|∂u(z)|2

|u(z)|2
dv = ∞. (5.4)
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(2) If u vanishes to infinite order at z0, then for every complex line L passing through z0,∫
U∩L

|∂̄u(z)|2

|u(z)|2
dv = ∞. (5.5)

Proof. For simplicity let z0 = 0 and n = 2. The higher dimensional cases can be proved
similarly. If u vanishes to finite order at 0, then after a holomorphic change of coordinates,
there exists some k ∈ Z+ such that

u = zk1 + gk−1(z2)z
k−1
1 + · · ·+ g0(z2) + h(z)

near 0. Here for each j = 0, . . . , k − 1, gj is smooth on U , holomorphic on Ω ∩ U and
gj(0) = 0, and h is a smooth function on U with h = 0 on Ω ∩ U . In particular, h is flat at
0. Thus on the complex line L = {(z1, 0) ∈ C2}, we have u|U∩L = zk1 + h(z1, 0) and so

|∂z1u|
|u|

=
k

|z1|
+O(1).

Hence (5.4) holds.
Assume u vanishes to infinite order at 0 and there exists a complex line L through 0 such

that |∂̄u|
|u| ∈ L2(U ∩ L). Applying a holomorphic change of coordinates if necessary, one can

always write L = {(z1, 0) ∈ C2}. Then v := u|U∩L vanishes to infinite order at 0 and

|∂̄z1u|
|u|

≤ |∂̄u|
|u|

∈ L2(U ∩ L).

In particular, there exists some W ∈ L2(U ∩L) such that ∂̄z1v = Wv on U ∩L. By Theorem
2.3, we have v ≡ 0. Thus (5.5) holds.

Proposition 5.7. Let Ω be a domain in Cn and z0 ∈ ∂Ω. Let u be a function holomorphic
on Ω and smooth on a neighborhood U ⊆ Cn of z0. Then one of the following mutually
exclusive cases holds.

(1) u is holomorphic on Ω ∪ U .
(2) ∫

U\Z∂̄u

∑n
j,k=1 |∂̄2zjzku(z)|

2∑n
j=1 |∂̄zju(z)|2

dv = ∞, (5.6)

where Z∂̄u is the zero set of the vector function ∂̄u.

Proof. Suppose u is not holomorphic on Ω ∪ U and (5.6) fails. Then Z∂̄u ∩ U ̸= U and the
function

W =


√∑n

j,k=1 |∂̄2
zjzk

u|2∑n
j=1 |∂̄zju|2

, on U \ Z∂̄u;

0, on Z∂̄u

belongs to L2
loc(U). Let v = (∂̄z1u, . . . , ∂̄znu). Then v : U → Cn satisfies |∂̄v| = W |v| on U

and vanishes on the nonempty open set U ∩ Ω. According to the weak unique continuation
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property in [PZ, Theorem 1.2], we have v ≡ 0 on U , contradicting the assumption that
Z∂̄u ∩ U ̸= U .

We point out that in the case when Ω is pseudoconvex with smooth boundary, there always
exists a function which is holomorphic on Ω and smooth on Ω, but does not extend holo-
morphically across a boundary point z0. Thus for every smooth extension of this function,
part (2) of Proposition 5.7 always occurs.

Remark 5.8. While all the propositions and corollaries in this section are formulated for
holomorphic functions with smooth extension across a boundary point, the same reasoning
and conclusions can be extended without effort to more general settings, including formally
holomorphic functions – smooth functions where the Taylor expansion at that point does
not contain z̄ terms. See [FP] for more discussion on formally holomorphic functions.
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